Differentiating signals from the background in micrographs is a critical initial step for cryogenic electron microscopy (cryo-EM), yet it remains laborious due to low signal-to-noise ratio (SNR), the presence of contaminants and densely packed particles of varying sizes. Although image segmentation has recently been introduced to distinguish particles at the pixel level, the low SNR complicates the automated generation of accurate annotations for training supervised models. Moreover, platforms for systematically comparing different design choices in pipeline construction are lacking. Thus, a modular framework is essential to understand the advantages and limitations of this approach and drive further development. To address these challenges, we present a pipeline that automatically generates high-quality segmentation maps from cryo-EM data to serve as ground truth labels. Our modular framework enables the selection of various segmentation models and loss functions. We also integrate Conditional Random Fields (CRFs) with different solvers and feature sets to refine coarse predictions, thereby producing fine-grained segmentation. This flexibility facilitates optimal configurations tailored to cryo-EM datasets. When trained on a limited set of micrographs, our approach achieves over 90% accuracy, recall, precision, Intersection over Union (IoU), and F1-score on synthetic data. Furthermore, to demonstrate our framework's efficacy in downstream analyses, we show that the particles extracted by our pipeline produce 3D density maps with higher resolution than those generated by existing particle pickers on real experimental datasets, while achieving performance comparable to that of manually curated datasets from experts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

条件随机域(场)(conditional random fields,简称 CRF,或CRFs),是一种判别式概率模型,是随机场的一种,常用于标注或分析序列资料,如自然语言文字或是生物序列。 如同马尔可夫随机场,条件随机场为具有无向的图模型,图中的顶点代表随机变量,顶点间的连线代表随机变量间的相依关系,在条件随机场中,随机变量 Y 的分布为条件机率,给定的观察值则为随机变量 X。原则上,条件随机场的图模型布局是可以任意给定的,一般常用的布局是链结式的架构,链结式架构不论在训练(training)、推论(inference)、或是解码(decoding)上,都存在效率较高的算法可供演算。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员