Let $P$ be a set of $n$ points in $\Re^2$. For a parameter $\varepsilon\in (0,1)$, a subset $C\subseteq P$ is an \emph{$\varepsilon$-kernel} of $P$ if the projection of the convex hull of $C$ approximates that of $P$ within $(1-\varepsilon)$-factor in every direction. The set $C$ is a \emph{weak $\varepsilon$-kernel} of $P$ if its directional width approximates that of $P$ in every direction. Let $\mathsf{k}_{\varepsilon}(P)$ (resp.\ $\mathsf{k}^{\mathsf{w}}_{\varepsilon}(P)$) denote the minimum-size of an $\varepsilon$-kernel (resp. weak $\varepsilon$-kernel) of $P$. We present an $O(n\mathsf{k}_{\varepsilon}(P)\log n)$-time algorithm for computing an $\varepsilon$-kernel of $P$ of size $\mathsf{k}_{\varepsilon}(P)$, and an $O(n^2\log n)$-time algorithm for computing a weak $\varepsilon$-kernel of $P$ of size ${\mathsf{k}}^{\mathsf{w}}_{\varepsilon}(P)$. We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of \emph{$\varepsilon$-core}, a convex polygon lying inside $\mathsf{ch}(P)$, prove that it is a good approximation of the optimal $\varepsilon$-kernel, present an efficient algorithm for computing it, and use it to compute an $\varepsilon$-kernel of small size.


翻译:美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 。 对于一个参数 美元 美元 美元 美元 美元 美元, 一个子集 美元 美元 子 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 如果 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元</s>

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员