Large Language Models (LLMs) such as ChatGPT have rendered visible the fragility of contemporary knowledge infrastructures by simulating coherence while bypassing traditional modes of citation, authority, and validation. This paper introduces the Situated Epistemic Infrastructures (SEI) framework as a diagnostic tool for analyzing how knowledge becomes authoritative across hybrid human-machine systems under post-coherence conditions. Rather than relying on stable scholarly domains or bounded communities of practice, SEI traces how credibility is mediated across institutional, computational, and temporal arrangements. Integrating insights from infrastructure studies, platform theory, and epistemology, the framework foregrounds coordination over classification, emphasizing the need for anticipatory and adaptive models of epistemic stewardship. The paper contributes to debates on AI governance, knowledge production, and the ethical design of information systems by offering a robust alternative to representationalist models of scholarly communication.


翻译:以ChatGPT为代表的大型语言模型(LLM)通过模拟连贯性同时绕过了传统的引用、权威与验证机制,从而揭示了当代知识基础设施的脆弱性。本文提出情境化认知基础设施(SEI)框架作为诊断工具,用于分析在后连贯性条件下知识如何在人机混合系统中获得权威性。该框架不依赖稳定的学术领域或界限分明的实践社群,而是追踪可信度如何在制度性、计算性与时间性安排中被中介传递。通过整合基础设施研究、平台理论与认识论的洞见,本框架将协调置于分类之上进行考察,强调建立预见性与适应性的认知管理模型之必要性。本文通过为学术交流的表征主义模型提供一种稳健的替代方案,为人工智能治理、知识生产与信息系统的伦理设计等相关辩论作出贡献。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
33+阅读 · 2021年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员