Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected subset of $\mathbb{R}^2$ and let $\mathcal{D}=\{D_1,\ldots,D_n\}$ be a set of geodesic disks with respect to the metric $d$. We prove that $\mathcal{G}^{\times}(\mathcal{D})$, the intersection graph of the disks in $\mathcal{D}$, has a clique-based separator consisting of $O(n^{3/4+\varepsilon})$ cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in time $2^{O(n^{3/4+\varepsilon})}$, assuming the boundaries of the disks $D_i$ can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses $O(n^{7/4+\varepsilon})$ storage and can report the hop distance between any two nodes in $\mathcal{G}^{\times}(\mathcal{D})$ in $O(n^{3/4+\varepsilon})$ time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
专知会员服务
33+阅读 · 2021年3月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员