We provide algorithms for isotonic regression minimizing $L_0$ error (Hamming distance). This is also known as monotonic relabeling, and is applicable when labels have a linear ordering but not necessarily a metric. There may be exponentially many optimal relabelings, so we look at secondary criteria to determine which are best. For arbitrary ordinal labels the criterion is maximizing the number of labels which are only changed to an adjacent label (and recursively apply this). For real-valued labels we minimize the $L_p$ error. For linearly ordered sets we also give algorithms which minimize the sum of the $L_p$ and weighted $L_0$ errors, a form of penalized (regularized) regression. We also examine $L_0$ isotonic regression on multidimensional coordinate-wise orderings. Previous algorithms took $\Theta(n^3)$ time, but we reduce this to $o(n^{3/2})$.


翻译:我们提供等离子回归算法, 最小化 $L_ 0$ 错误( 危险距离 ) 。 这也被称为单调重标签, 当标签有线性顺序时适用, 但不一定是一公吨。 可能有指数性的最佳重标签, 因此我们查看二级标准以确定哪一种最佳。 对于任意的交点标签, 标准是将标签数量最大化, 这些标签仅更改为相邻标签( 并循环应用此值 ) 。 对于实际价值的标签, 我们最小化 $L_ p$ 错误。 对于线性订购的套件, 我们还提供将 $L_ p$ 和 加权 $L_ 0$ 错误之和最小化的算法, 这是一种受处罚( 常规化) 回归形式。 我们还检查多维协调排序上的 $L_ 0$ 等离子回归。 以前的算法花费了 $\ Theta( n%3) 时间, 但是我们将它降为 $( n_ 3/2} 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
0+阅读 · 2022年7月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员