The limit of infinite width allows for substantial simplifications in the analytical study of overparameterized neural networks. With a suitable random initialization, an extremely large network is well approximated by a Gaussian process, both before and during training. In the present work, we establish a similar result for a simple stochastic architecture whose parameters are random variables. The explicit evaluation of the output distribution allows for a PAC-Bayesian training procedure that directly optimizes the generalization bound. For a large but finite-width network, we show empirically on MNIST that this training approach can outperform standard PAC-Bayesian methods.


翻译:无限宽度的限度可以大大简化对超参数神经网络的分析研究。 有了适当的随机初始化, 一个巨大的网络在培训前后和培训期间都被一个高斯进程所近似。 在目前的工作中, 我们为一个简单的随机变量参数的随机随机随机结构建立类似的结果。 对输出分布的清晰评价允许一个PAC-Bayesian培训程序, 直接优化一般化约束。 对于一个大型但有限的宽度网络, 我们用实验方法向MNIST显示, 这种培训方法可以超过标准的PAC- Bayesian 方法。

0
下载
关闭预览

相关内容

Explanation:网络。 Publisher:Wiley。 SIT: http://dblp.uni-trier.de/db/journals/networks/
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员