3D object detection from multi-view images in traffic scenarios has garnered significant attention in recent years. Many existing approaches rely on object queries that are generated from 3D reference points to localize objects. However, a limitation of these methods is that some reference points are often far from the target object, which can lead to false positive detections. In this paper, we propose a depth-guided query generator for 3D object detection (DQ3D) that leverages depth information and 2D detections to ensure that reference points are sampled from the surface or interior of the object. Furthermore, to address partially occluded objects in current frame, we introduce a hybrid attention mechanism that fuses historical detection results with depth-guided queries, thereby forming hybrid queries. Evaluation on the nuScenes dataset demonstrates that our method outperforms the baseline by 6.3\% in terms of mean Average Precision (mAP) and 4.3\% in the NuScenes Detection Score (NDS).


翻译:交通场景中基于多视图图像的三维目标检测近年来受到广泛关注。许多现有方法依赖于从三维参考点生成的对象查询来定位目标。然而,这些方法的一个局限在于,部分参考点常常远离目标物体,这可能导致误检。本文提出了一种用于三维目标检测的深度引导查询生成器(DQ3D),它利用深度信息和二维检测结果,确保参考点从物体表面或内部采样。此外,为解决当前帧中部分被遮挡物体的问题,我们引入了一种混合注意力机制,将历史检测结果与深度引导查询相融合,从而形成混合查询。在nuScenes数据集上的评估表明,我们的方法在平均精度均值(mAP)上优于基线6.3%,在NuScenes检测分数(NDS)上优于基线4.3%。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员