Recurrent Neural Networks (RNN) are ubiquitous computing systems for sequences and multivariate time series data. While several robust architectures of RNN are known, it is unclear how to relate RNN initialization, architecture, and other hyperparameters with accuracy for a given task. In this work, we propose to treat RNN as dynamical systems and to correlate hyperparameters with accuracy through Lyapunov spectral analysis, a methodology specifically designed for nonlinear dynamical systems. To address the fact that RNN features go beyond the existing Lyapunov spectral analysis, we propose to infer relevant features from the Lyapunov spectrum with an Autoencoder and an embedding of its latent representation (AeLLE). Our studies of various RNN architectures show that AeLLE successfully correlates RNN Lyapunov spectrum with accuracy. Furthermore, the latent representation learned by AeLLE is generalizable to novel inputs from the same task and is formed early in the process of RNN training. The latter property allows for the prediction of the accuracy to which RNN would converge when training is complete. We conclude that representation of RNN through Lyapunov spectrum along with AeLLE provides a novel method for organization and interpretation of variants of RNN architectures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

RNN:循环神经网络,是深度学习的一种模型。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员