We study a class of distributionally robust games where agents are allowed to heterogeneously choose their risk aversion with respect to distributional shifts of the uncertainty. In our formulation, heterogeneous Wasserstein ball constraints on each distribution are enforced through a penalty function leveraging a Lagrangian formulation. We then formulate the distributionally robust Nash equilibrium problem and show that under certain assumptions it is equivalent to a finite-dimensional variational inequality problem with a strongly monotone mapping. We then design an approximate Nash equilibrium seeking algorithm and prove convergence of the average regret to a quantity that diminishes with the number of iterations, thus learning the desired equilibrium up to an a priori specified accuracy. Numerical simulations corroborate our theoretical findings.


翻译:本文研究一类分布鲁棒博弈问题,其中智能体可异构地选择其对不确定性分布偏移的风险规避程度。通过拉格朗日方法引入惩罚函数,我们在模型中为每个分布施加异构的Wasserstein球约束。随后构建分布鲁棒纳什均衡问题,并证明在特定假设下该问题等价于具有强单调映射的有限维变分不等式问题。我们设计了一种近似纳什均衡求解算法,证明平均遗憾值随迭代次数增加而收敛至可忽略量级,从而以先验指定的精度学习目标均衡。数值仿真结果验证了理论结论。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
19+阅读 · 2021年8月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
19+阅读 · 2021年8月15日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员