The 21st century has seen an enormous growth in the development and use of approximate Bayesian methods. Such methods produce computational solutions to certain intractable statistical problems that challenge exact methods like Markov chain Monte Carlo: for instance, models with unavailable likelihoods, high-dimensional models, and models featuring large data sets. These approximate methods are the subject of this review. The aim is to help new researchers in particular -- and more generally those interested in adopting a Bayesian approach to empirical work -- distinguish between different approximate techniques; understand the sense in which they are approximate; appreciate when and why particular methods are useful; and see the ways in which they can can be combined.


翻译:21世纪,近似贝叶斯方法的开发和使用有了巨大增长,这些方法为某些棘手的统计问题提供了计算解决方案,这些问题挑战了马可夫链蒙特卡洛等精确方法:例如,没有可能性的模型、高维模型和大型数据集模型。这些近似方法是本审查的主题。目的是帮助新的研究人员 -- -- 更一般地说,帮助那些对采用巴耶斯方法的经验工作感兴趣的研究人员 -- -- 区分不同的近似技术;理解其近似含义;理解何时和为什么特定方法有用;并了解如何将它们结合起来。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
机器学习算法实践:朴素贝叶斯 (Naive Bayes)
Python开发者
3+阅读 · 2017年7月22日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
机器学习算法实践:朴素贝叶斯 (Naive Bayes)
Python开发者
3+阅读 · 2017年7月22日
Top
微信扫码咨询专知VIP会员