Set reconciliation, where two parties hold fixed-length bit strings and run a protocol to learn the strings they are missing from each other, is a fundamental task in many distributed systems. We present Rateless Invertible Bloom Lookup Tables (Rateless IBLT), the first set reconciliation protocol, to the best of our knowledge, that achieves low computation cost and near-optimal communication cost across a wide range of scenarios: set differences of one to millions, bit strings of a few bytes to megabytes, and workloads injected by potential adversaries. Rateless IBLT is based on a novel encoder that incrementally encodes the set difference into an infinite stream of coded symbols, resembling rateless error-correcting codes. We compare Rateless IBLT with state-of-the-art set reconciliation schemes and demonstrate significant improvements. Rateless IBLT achieves 3--4x lower communication cost than non-rateless schemes with similar computation cost, and 2--2000x lower computation cost than schemes with similar communication cost. We show the real-world benefits of Rateless IBLT by applying it to synchronize the state of the Ethereum blockchain, and demonstrate 5.6x lower end-to-end completion time and 4.4x lower communication cost compared to the system used in production.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月17日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
12+阅读 · 2023年5月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月17日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
12+阅读 · 2023年5月22日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员