The transformer architecture has revolutionized bioinformatics and driven progress in the understanding and prediction of the properties of biomolecules. Almost all research on large-scale biosequence transformers has focused on one domain at a time (single-omic), usually DNA/RNA or proteins. These models have seen incredible success in downstream tasks in each domain, and have achieved particularly noteworthy breakthroughs in sequence modeling and structural modeling. However, these single-omic models are naturally incapable of efficiently modeling multi-omic tasks, one of the most biologically critical being protein-nucleic acid interactions. We present our work training the largest open-source multi-omic foundation model to date. We show that these multi-omic models (MOMs) can learn joint representations between various single-omic distributions that are emergently consistent with the Central Dogma of molecular biology despite only being trained on unlabeled biosequences. We further demonstrate that MOMs can be fine-tuned to achieve state-of-the-art results on protein-nucleic acid interaction tasks, namely predicting the change in Gibbs free energy ($\Delta G$) of the binding interaction between a given nucleic acid and protein. Remarkably, we show that multi-omic biosequence transformers emergently learn useful structural information without any \textit{a priori} structural training, allowing us to predict which protein residues are most involved in the protein-nucleic acid binding interaction. Lastly, we provide evidence that multi-omic biosequence models are in many cases superior to foundation models trained on single-omics distributions, both in performance-per-FLOP and absolute performance, suggesting a more generalized or foundational approach to building these models for biology.


翻译:Transformer架构已彻底改变了生物信息学领域,并推动了对生物分子特性理解与预测的进展。目前几乎所有大规模生物序列Transformer的研究都集中于单一组学领域(单组学),通常是DNA/RNA或蛋白质。这些模型在各自领域的下游任务中取得了显著成功,尤其在序列建模和结构建模方面实现了突破性进展。然而,这些单组学模型本质上无法有效建模多组学任务,其中最具生物学关键性的任务之一是蛋白质-核酸相互作用。本研究提出了迄今为止最大的开源多组学基础模型的训练工作。我们证明这些多组学模型能够学习不同单组学分布之间的联合表征,尽管仅使用未标记的生物序列进行训练,这些表征仍能自发符合分子生物学的中心法则。我们进一步证明,通过对多组学模型进行微调,可以在蛋白质-核酸相互作用任务上取得最先进的结果,即预测特定核酸与蛋白质之间结合相互作用的吉布斯自由能变化($\Delta G$)。值得注意的是,我们发现多组学生物序列Transformer能够在没有任何先验结构训练的情况下自发学习有用的结构信息,从而能够预测哪些蛋白质残基在蛋白质-核酸结合相互作用中最为关键。最后,我们提供的证据表明,无论是在单位FLOP性能还是绝对性能上,多组学生物序列模型在许多情况下都优于基于单组学分布训练的基础模型,这为构建更具普适性或基础性的生物学模型提供了新思路。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员