The empirical success of multi-agent reinforcement learning (MARL) has motivated the search for more efficient and scalable algorithms for large scale multi-agent systems. However, existing state-of-the-art algorithms do not fully exploit inter-agent coupling information to develop MARL algorithms. In this paper, we propose a systematic approach to leverage structures in the inter-agent couplings for efficient model-free reinforcement learning. We model the cooperative MARL problem via a Bayesian network and characterize the subset of agents, termed as the value dependency set, whose information is required by each agent to estimate its local action value function exactly. Moreover, we propose a partially decentralized training decentralized execution (P-DTDE) paradigm based on the value dependency set. We theoretically establish that the total variance of our P-DTDE policy gradient estimator is less than the centralized training decentralized execution (CTDE) policy gradient estimator. We derive a multi-agent policy gradient theorem based on the P-DTDE scheme and develop a scalable actor-critic algorithm. We demonstrate the efficiency and scalability of the proposed algorithm on multi-warehouse resource allocation and multi-zone temperature control examples. For dense value dependency sets, we propose an approximation scheme based on truncation of the Bayesian network and empirically show that it achieves a faster convergence than the exact value dependence set for applications with a large number of agents.


翻译:多智能体强化学习(MARL)的经验成功推动了对大规模多智能体系统中更高效、可扩展算法的探索。然而,现有最先进的算法未能充分利用智能体间的耦合信息来开发MARL算法。本文提出一种系统性方法,利用智能体间耦合结构实现高效的无模型强化学习。我们通过贝叶斯网络对协同MARL问题进行建模,并定义了每个智能体为精确估计其局部动作价值函数所需的信息子集——称为价值依赖集。基于该价值依赖集,我们进一步提出部分去中心化训练-去中心化执行(P-DTDE)范式。理论上我们证明了P-DTDE策略梯度估计器的总方差小于中心化训练-去中心化执行(CTDE)策略梯度估计器。基于P-DTDE框架,我们推导出多智能体策略梯度定理,并开发了可扩展的演员-评论家算法。通过在多仓库资源分配和多区域温度控制案例中的实验,验证了所提算法的高效性与可扩展性。针对稠密价值依赖集,我们提出基于贝叶斯网络截断的近似方案,并通过实证表明在智能体数量庞大的应用场景中,该方案比精确价值依赖集具有更快的收敛速度。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员