Matrix Factorization is one of the most successful recommender system techniques over the past decade. However, the classic probabilistic theory framework for matrix factorization is modeled using normal distributions. To find better probabilistic models, algorithms such as RankMat, ZeroMat and DotMat have been invented in recent years. In this paper, we model the user rating behavior in recommender system as a Poisson process, and design an algorithm that relies on no input data to solve the recommendation problem and the cold start issue at the same time. We prove the superiority of our algorithm in comparison with matrix factorization, random placement, Zipf placement, ZeroMat, DotMat, etc.


翻译:矩阵保理是过去十年中最成功的推荐系统技术之一。 但是, 典型的矩阵保理概率理论框架是使用正常分布模型模型构建的。 为了找到更好的概率模型, 最近几年里发明了RankMat、 ZeroMat和DotMat等算法。 在本文中, 我们将推荐系统中的用户评级行为作为 Poisson 程序模型, 并设计一种不依赖输入数据解决推荐问题和冷点启动问题的算法。 我们证明了我们算法与矩阵保理学、 随机布置、 Zipf 放置、 ZeroMat、 DotMat 等相比的优越性 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员