The Weighted Connectivity Augmentation Problem is the problem of augmenting the edge-connectivity of a given graph by adding links of minimum total cost. This work focuses on connectivity augmentation problems in the Steiner setting, where we are not interested in the connectivity between all nodes of the graph, but only the connectivity between a specified subset of terminals. We consider two related settings. In the Steiner Augmentation of a Graph problem ($k$-SAG), we are given a $k$-edge-connected subgraph $H$ of a graph $G$. The goal is to augment $H$ by including links and nodes from $G$ of minimum cost so that the edge-connectivity between nodes of $H$ increases by 1. In the Steiner Connectivity Augmentation Problem ($k$-SCAP), we are given a Steiner $k$-edge-connected graph connecting terminals $R$, and we seek to add links of minimum cost to create a Steiner $(k+1)$-edge-connected graph for $R$. Note that $k$-SAG is a special case of $k$-SCAP. All of the above problems can be approximated to within a factor of 2 using e.g. Jain's iterative rounding algorithm for Survivable Network Design. In this work, we leverage the framework of Traub and Zenklusen to give a $(1 + \ln{2} +\varepsilon)$-approximation for the Steiner Ring Augmentation Problem (SRAP): given a cycle $H = (V(H),E)$ embedded in a larger graph $G = (V, E \cup L)$ and a subset of terminals $R \subseteq V(H)$, choose a subset of links $S \subseteq L$ of minimum cost so that $(V, E \cup S)$ has 3 pairwise edge-disjoint paths between every pair of terminals. We show this yields a polynomial time algorithm with approximation ratio $(1 + \ln{2} + \varepsilon)$ for $2$-SCAP. We obtain an improved approximation guarantee of $(1.5+\varepsilon)$ for SRAP in the case that $R = V(H)$, which yields a $(1.5+\varepsilon)$-approximation for $k$-SAG for any $k$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月5日
Arxiv
0+阅读 · 2023年10月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员