Algorithmic trading requires short-term tactical decisions consistent with long-term financial objectives. Reinforcement Learning (RL) has been applied to such problems, but adoption is limited by myopic behaviour and opaque policies. Large Language Models (LLMs) offer complementary strategic reasoning and multi-modal signal interpretation when guided by well-structured prompts. This paper proposes a hybrid framework in which LLMs generate high-level trading strategies to guide RL agents. We evaluate (i) the economic rationale of LLM-generated strategies through expert review, and (ii) the performance of LLM-guided agents against unguided RL baselines using Sharpe Ratio (SR) and Maximum Drawdown (MDD). Empirical results indicate that LLM guidance improves both return and risk metrics relative to standard RL.


翻译:算法交易要求短期战术决策与长期财务目标保持一致。强化学习(RL)已被应用于此类问题,但其采用受到短视行为和策略不透明的限制。大型语言模型(LLM)在结构化提示的引导下,能够提供互补的战略推理和多模态信号解读能力。本文提出一种混合框架,其中LLM生成高层交易策略以指导RL智能体。我们通过(i)专家评审评估LLM生成策略的经济合理性,以及(ii)使用夏普比率(SR)和最大回撤(MDD)将LLM引导的智能体与无引导的RL基线进行性能对比。实证结果表明,相对于标准RL,LLM引导在收益和风险指标上均有改善。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年9月22日
Arxiv
29+阅读 · 2023年2月10日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
11+阅读 · 2023年9月22日
Arxiv
29+阅读 · 2023年2月10日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员