We present a combinatorial algorithm for computing exact maximum flows in directed graphs with $n$ vertices and edge capacities from $\{1,\dots,U\}$ in $n^{2+o(1)}\log U$ time, which is almost optimal in dense graphs. Our algorithm is a novel implementation of the classical augmenting-path framework; we list augmenting paths more efficiently using a new variant of the push-relabel algorithm that uses additional edge weights to guide the algorithm, and we derive the edge weights by constructing a directed expander hierarchy. Even in unit-capacity graphs, this breaks the long-standing $O(m\cdot\min\{\sqrt{m},n^{2/3}\})$ time bound of the previous combinatorial algorithms by Karzanov (1973) and Even and Tarjan (1975) when the graph has $m=\omega(n^{4/3})$ edges. Notably, our approach does not rely on continuous optimization nor heavy dynamic graph data structures, both of which are crucial in the recent developments that led to the almost-linear time algorithm by Chen et al. (FOCS 2022). Our running time also matches the $n^{2+o(1)}$ time bound of the independent combinatorial algorithm by Chuzhoy and Khanna (STOC 2024) for computing the maximum bipartite matching, a special case of maximum flow.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员