Artificial neural networks (ANNs) have permeated various disciplinary domains, ranging from bioinformatics to financial analytics, where their application has become an indispensable facet of contemporary scientific research endeavors. However, the inherent limitations of traditional neural networks arise due to their relatively fixed network structures and activation functions. 1, The type of activation function is single and relatively fixed, which leads to poor "unit representation ability" of the network, and it is often used to solve simple problems with very complex networks; 2, the network structure is not adaptive, it is easy to cause network structure redundant or insufficient. To address the aforementioned issues, this study proposes a novel neural network called X-Net. By utilizing our designed Alternating Backpropagation mechanism, X-Net dynamically selects appropriate activation functions based on derivative information during training to enhance the network's representation capability for specific tasks. Simultaneously, it accurately adjusts the network structure at the neuron level to accommodate tasks of varying complexities and reduce computational costs. Through a series of experiments, we demonstrate the dual advantages of X-Net in terms of reducing model size and improving representation power. Specifically, in terms of the number of parameters, X-Net is only 3$\%$ of baselines on average, and only 1.4$\%$ under some tasks. In terms of representation ability, X-Net can achieve an average $R^2$=0.985 on the fitting task by only optimizing the activation function without introducing any parameters. Finally, we also tested the ability of X-Net to help scientific discovery on data from multiple disciplines such as society, energy, environment, and aerospace, and achieved concise and good results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员