Differentiable optimization has attracted significant research interest, particularly for quadratic programming (QP). Existing approaches for differentiating the solution of a QP with respect to its defining parameters often rely on specific integrated solvers. This integration limits their applicability, including their use in neural network architectures and bi-level optimization tasks, restricting users to a narrow selection of solver choices. To address this limitation, we introduce dQP, a modular and solver-agnostic framework for plug-and-play differentiation of virtually any QP solver. A key insight we leverage to achieve modularity is that, once the active set of inequality constraints is known, both the solution and its derivative can be expressed using simplified linear systems that share the same matrix. This formulation fully decouples the computation of the QP solution from its differentiation. Building on this result, we provide a minimal-overhead, open-source implementation ( https://github.com/cwmagoon/dQP ) that seamlessly integrates with over 15 state-of-the-art solvers. Comprehensive benchmark experiments demonstrate dQP's robustness and scalability, particularly highlighting its advantages in large-scale sparse problems.


翻译:可微分优化已引起广泛的研究关注,尤其在二次规划领域。现有方法通常依赖特定的集成求解器来实现QP解相对于其定义参数的微分,这种集成限制了其应用范围,包括在神经网络架构和双层优化任务中的使用,并将用户局限于有限的求解器选择。为克服这一局限,我们提出了dQP,一个模块化且与求解器无关的即插即用框架,可对几乎任何QP求解器进行微分。实现模块化的关键见解在于:一旦不等式约束的活跃集已知,解及其导数均可通过共享同一矩阵的简化线性系统表示。该公式将QP解的求解过程与其微分计算完全解耦。基于此结果,我们提供了一个开销极小的开源实现(https://github.com/cwmagoon/dQP),可无缝集成超过15种前沿求解器。全面的基准实验证明了dQP的鲁棒性和可扩展性,尤其凸显了其在大规模稀疏问题中的优势。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
15+阅读 · 2019年11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员