Aerial-Ground Person Re-IDentification (AG-ReID) aims to retrieve specific persons across cameras with different viewpoints. Previous works focus on designing discriminative models to maintain the identity consistency despite drastic changes in camera viewpoints. The core idea behind these methods is quite natural, but designing a view-robust model is a very challenging task. Moreover, they overlook the contribution of view-specific features in enhancing the model's ability to represent persons. To address these issues, we propose a novel generative framework named SD-ReID for AG-ReID, which leverages generative models to mimic the feature distribution of different views while extracting robust identity representations. More specifically, we first train a ViT-based model to extract person representations along with controllable conditions, including identity and view conditions. We then fine-tune the Stable Diffusion (SD) model to enhance person representations guided by these controllable conditions. Furthermore, we introduce the View-Refined Decoder (VRD) to bridge the gap between instance-level and global-level features. Finally, both person representations and all-view features are employed to retrieve target persons. Extensive experiments on five AG-ReID benchmarks (i.e., CARGO, AG-ReIDv1, AG-ReIDv2, LAGPeR and G2APS-ReID) demonstrate the effectiveness of our proposed method. The source code will be available.


翻译:空地行人重识别旨在跨不同视角的摄像头检索特定行人。先前的研究侧重于设计判别性模型以在相机视角剧烈变化时保持身份一致性。这些方法的核心思想较为直观,但设计一个视角鲁棒的模型极具挑战性。此外,它们忽视了视角特异性特征对增强模型行人表征能力的贡献。为解决这些问题,我们提出了一种名为SD-ReID的新型生成式框架,该框架利用生成模型模拟不同视角的特征分布,同时提取鲁棒的身份表征。具体而言,我们首先训练一个基于ViT的模型,以提取包含可控条件(包括身份条件和视角条件)的行人表征。随后,我们微调稳定扩散模型,在这些可控条件的引导下增强行人表征。此外,我们引入了视角精炼解码器,以弥合实例级特征与全局级特征之间的差距。最终,结合行人表征和全视角特征进行目标行人检索。在五个空地行人重识别基准数据集(即CARGO、AG-ReIDv1、AG-ReIDv2、LAGPeR和G2APS-ReID)上的大量实验验证了所提方法的有效性。源代码将公开提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员