Identifying human morals and values embedded in language is essential to empirical studies of communication. However, researchers often face substantial difficulty navigating the diversity of theoretical frameworks and data available for their analysis. Here, we contribute MoVa, a well-documented suite of resources for generalizable classification of human morals and values, consisting of (1) 16 labeled datasets and benchmarking results from four theoretically-grounded frameworks; (2) a lightweight LLM prompting strategy that outperforms fine-tuned models across multiple domains and frameworks; and (3) a new application that helps evaluate psychological surveys. In practice, we specifically recommend a classification strategy, all@once, that scores all related concepts simultaneously, resembling the well-known multi-label classifier chain. The data and methods in MoVa can facilitate many fine-grained interpretations of human and machine communication, with potential implications for the alignment of machine behavior.


翻译:识别语言中蕴含的人类道德与价值观对于传播学的实证研究至关重要。然而,研究人员在驾驭多样化的理论框架和可用数据进行分析时常常面临巨大困难。本文提出MoVa——一套文档完备的资源套件,用于实现人类道德与价值观的泛化分类,其包含:(1) 基于四个理论框架构建的16个标注数据集及基准测试结果;(2) 一种轻量级的大语言模型提示策略,其在多个领域和框架中表现优于微调模型;(3) 一个用于评估心理学量表的新应用工具。在实际应用中,我们特别推荐一种名为all@once的分类策略,该策略可同时对所有相关概念进行评分,其原理类似于经典的多标签分类器链。MoVa中的数据与方法能够促进对人类及机器传播的细粒度解读,并对机器行为的对齐具有潜在启示意义。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员