Cyber attacks are often identified using system and network logs. There have been significant prior works that utilize provenance graphs and ML techniques to detect attacks, specifically advanced persistent threats, which are very difficult to detect. Lately, there have been studies where transformer-based language models are being used to detect various types of attacks from system logs. However, no such attempts have been made in the case of APTs. In addition, existing state-of-the-art techniques that use system provenance graphs, lack a data processing framework generalized across datasets for optimal performance. For mitigating this limitation as well as exploring the effectiveness of transformer-based language models, this paper proposes LogShield, a framework designed to detect APT attack patterns leveraging the power of self-attention in transformers. We incorporate customized embedding layers to effectively capture the context of event sequences derived from provenance graphs. While acknowledging the computational overhead associated with training transformer networks, our framework surpasses existing LSTM and Language models regarding APT detection. We integrated the model parameters and training procedure from the RoBERTa model and conducted extensive experiments on well-known APT datasets (DARPA OpTC and DARPA TC E3). Our framework achieved superior F1 scores of 98% and 95% on the two datasets respectively, surpassing the F1 scores of 96% and 94% obtained by LSTM models. Our findings suggest that LogShield's performance benefits from larger datasets and demonstrates its potential for generalization across diverse domains. These findings contribute to the advancement of APT attack detection methods and underscore the significance of transformer-based architectures in addressing security challenges in computer systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员