Censor-Hillel, Cohen, Gelles, and Sela (PODC 2022 & Distributed Computing 2023) studied fully-defective asynchronous networks, where communication channels may suffer an extreme form of alteration errors, rendering messages completely corrupted. The model is equivalent to content-oblivious computation, where nodes communicate solely via pulses. They showed that if the network is 2-edge-connected, then any algorithm for a noiseless setting can be simulated in the fully-defective setting; otherwise, no non-trivial computation is possible in the fully-defective setting. However, their simulation requires a predesignated leader, which they conjectured to be necessary for any non-trivial content-oblivious task. In this work, we present two results: General 2-edge-connected topologies: First, we show an asynchronous content-oblivious leader election algorithm that quiescently terminates in any 2-edge-connected network with message complexity $O(m \cdot N \cdot \mathsf{ID}_{\min})$, where $m$ is the number of edges, $N$ is a known upper bound on the number of nodes, and $\mathsf{ID}_{\min}$ is the smallest $\mathsf{ID}$. Combined with the above simulation, this result shows that whenever a size bound $N$ is known, any noiseless algorithm can be simulated in the fully-defective model without a preselected leader, fully refuting the conjecture. Unoriented rings: We then show that the knowledge of $N$ can be dropped in unoriented ring topologies by presenting a quiescently terminating election algorithm with message complexity $O(n \cdot \mathsf{ID}_{\max})$ that matches the previous bound. Consequently, this result constitutes a strict improvement over the previous leader election in oriented rings by Frei, Gelles, Ghazy, and Nolin (DISC 2024) and shows that, on rings, fully-defective and noiseless communication are computationally equivalent, with no additional assumptions.
翻译:Censor-Hillel、Cohen、Gelles和Sela(PODC 2022 & Distributed Computing 2023)研究了完全缺陷的异步网络,其中通信信道可能遭受一种极端的篡改错误,导致消息完全损坏。该模型等价于内容无关的计算,其中节点仅通过脉冲进行通信。他们证明,如果网络是2-边连通的,那么任何无噪声设置下的算法都可以在完全缺陷设置中被模拟;否则,在完全缺陷设置中不可能进行任何非平凡的计算。然而,他们的模拟需要一个预先指定的领导者,他们推测这对于任何非平凡的内容无关任务是必要的。在这项工作中,我们提出了两个结果:一般2-边连通拓扑:首先,我们展示了一种异步内容无关的领导者选举算法,该算法在任何2-边连通网络中静默终止,消息复杂度为$O(m \cdot N \cdot \mathsf{ID}_{\min})$,其中$m$是边数,$N$是节点数量的已知上界,$\mathsf{ID}_{\min}$是最小的$\mathsf{ID}$。结合上述模拟,这一结果表明,只要已知规模上界$N$,任何无噪声算法都可以在完全缺陷模型中模拟,而无需预先选定的领导者,从而完全反驳了该猜想。无定向环:然后我们证明,在无定向环拓扑中,可以放弃对$N$的认知,通过提出一种静默终止的选举算法,其消息复杂度为$O(n \cdot \mathsf{ID}_{\max})$,与先前的界限相匹配。因此,这一结果构成了对Frei、Gelles、Ghazy和Nolin(DISC 2024)先前在定向环中领导者选举的严格改进,并表明在环上,完全缺陷通信与无噪声通信在计算上是等价的,无需额外假设。