Pretrained Large Language Models (LLM) such as ChatGPT, Claude, etc. have demonstrated strong capabilities in various fields of natural language generation. However, there are still many problems when using LLM in specialized domain-specific fields. When using generative AI to process downstream tasks, a common approach is to add new knowledge (e.g., private domain knowledge, cutting-edge information) to a pretrained model through continued training or fine-tuning. However, whether there is a universal paradigm for domain adaptation training is still an open question. In this article, we proposed Information Gain Optimized Tokenizer (IGOT), which analyzes the special token set of downstream tasks, constructs a new subset using heuristic function $\phi$ with the special token and its information gain, to build new domain-specific tokenizer, and continues pretraining on the downstream task data. We explored the many positive effects of this method's customized tokenizer on domain-adaptive pretraining and verified this method can perform better than the ordinary method of just collecting data and fine-tuning. Based on our experiment, the continued pretraining process of IGOT with LLaMA-7B achieved 11.9\% token saving, 12.2\% training time saving, and 5.8\% maximum GPU VRAM usage saving, combined with the T5 model, we can even reach a 31.5\% of training time saving, making porting general generative AI to specific domains more effective than before. In domain-specific tasks, supervised $IGOT_\tau$ shows great performance on reducing both the convergence radius and convergence point during keep pretraining.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员