Free space ground segmentation is essential to navigate robots and autonomous vehicles, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. In order to overcome these limitations, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation model that maintains high segmentation accuracy while improving border precision. Our method uses CSP-Darknet backbone by adding a Residual Border Refinement Module (RBRM) for accurate edge delineation and an Attention Progressive Upsampling Decoder (APUD) for strong feature integration. We also incorporate a lightweight Atrous Spatial Pyramid Pooling (ASPP-Lite) module to ensure multi-scale context extraction without compromising real-time performance. The proposed model beats benchmark segmentation architectures in mIoU and F1 metrics when tested on the Ground Mobile Robot Perception (GMRP) Dataset and a custom Gazebo indoor dataset. Our approach achieves an improvement in mean Intersection-over-Union (mIoU) of +1.26% and segmentation precision of +1.65% compared to state-of-the-art models. These results show that our technique is feasible for autonomous perception in both indoor and outdoor environments, enabling precise border refinement with minimal effect on inference speed.


翻译:自由空间地面分割对于机器人及自动驾驶车辆的导航、可行驶区域识别以及高效路径规划至关重要。现有分割模型在细粒度特征处理方面仍面临挑战,尤其在室内结构化环境中的机器人应用中。这些困难主要源于多尺度处理机制的低效性、边界细化策略的次优性以及特征表示能力的局限性。为克服上述不足,本文提出一种基于注意力引导上采样与残差边界辅助细化(AURASeg)的地面平面语义分割模型,该模型在保持高分割精度的同时显著提升了边界定位准确性。本方法采用CSP-Darknet主干网络,通过引入残差边界细化模块(RBRM)实现精确边缘刻画,并设计注意力渐进上采样解码器(APUD)以强化特征融合能力。同时集成轻量化空洞空间金字塔池化模块(ASPP-Lite),在保证实时性能的前提下实现多尺度上下文特征提取。在Ground Mobile Robot Perception(GMRP)数据集及自定义Gazebo室内数据集上的实验表明,所提模型在mIoU与F1指标上均超越基准分割架构。相较于现有最优模型,本方法在平均交并比(mIoU)上提升1.26%,分割精度提高1.65%。实验结果验证了该技术方案在室内外自主感知场景中的可行性,能够在几乎不影响推理速度的前提下实现精确的边界细化。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员