Accurately simulating diverse behaviors of heterogeneous agents in various scenarios is fundamental to autonomous driving simulation. This task is challenging due to the multi-modality of behavior distribution, the high-dimensionality of driving scenarios, distribution shift, and incomplete information. Our first insight is to leverage state-matching through differentiable simulation to provide meaningful learning signals and achieve efficient credit assignment for the policy. This is demonstrated by revealing the existence of gradient highways and interagent gradient pathways. However, the issues of gradient explosion and weak supervision in low-density regions are discovered. Our second insight is that these issues can be addressed by applying dual policy regularizations to narrow the function space. Further considering diversity, our third insight is that the behaviors of heterogeneous agents in the dataset can be effectively compressed as a series of prototype vectors for retrieval. These lead to our model-based reinforcement-imitation learning framework with temporally abstracted mixture-of-codebooks (MRIC). MRIC introduces the open-loop modelbased imitation learning regularization to stabilize training, and modelbased reinforcement learning (RL) regularization to inject domain knowledge. The RL regularization involves differentiable Minkowskidifference-based collision avoidance and projection-based on-road and traffic rule compliance rewards. A dynamic multiplier mechanism is further proposed to eliminate the interference from the regularizations while ensuring their effectiveness. Experimental results using the largescale Waymo open motion dataset show that MRIC outperforms state-ofthe-art baselines on diversity, behavioral realism, and distributional realism, with large margins on some key metrics (e.g., collision rate, minSADE, and time-to-collision JSD).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员