We present a facial emotion recognition framework, built upon Swin vision Transformers jointly with squeeze and excitation block (SE). A transformer model based on an attention mechanism has been presented recently to address vision tasks. Our method uses a vision transformer with a Squeeze excitation block (SE) and sharpness-aware minimizer (SAM). We have used a hybrid dataset, to train our model and the AffectNet dataset to evaluate the result of our model


翻译:我们提出了一个面部情感识别框架,这个框架以Swin视觉变形器为基础,与挤压和刺激区(SE)联合建立。最近提出了一种基于关注机制的变压器模型,用于应对视觉任务。我们的方法使用一个带有震动感应区(SE)和锐利感知最小化器(SAM)的视觉变压器。我们使用了一个混合数据集,来培训我们的模型和AffectNet数据集来评估模型的结果。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月16日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员