The rise of Large Language Models (LLMs) has sparked interest in their application to sequential recommendation tasks as they can provide supportive item information. However, due to the inherent complexities of sequential recommendation, such as sequential patterns across datasets, noise within sequences, and the temporal evolution of user preferences, existing LLM reasoning strategies, such as in-context learning and chain-of-thought are not fully effective. To address these challenges, we introduce a novel reasoning principle: Dynamic Reflection with Divergent Thinking within a retriever-reranker framework. Our approach starts with a collaborative in-context demonstration retriever, which collects sequences exhibiting collaborative behaviors as in-context examples. Following this, we abstract high-level user preferences across multiple aspects, providing a more nuanced understanding of user interests and circumventing the noise within the raw sequences. The cornerstone of our methodology is dynamic reflection, a process that emulates human learning through probing, critiquing, and reflecting, using user feedback to tailor the analysis more effectively to the target user in a temporal manner. We evaluate our approach on three datasets using six pre-trained LLMs. The superior performance observed across these models demonstrates the efficacy of our reasoning strategy, notably achieved without the need to fine-tune the LLMs. With our principle, we managed to outperform GPT-Turbo-3.5 on three datasets using 7b models e.g., Vicuna-7b and Openchat-7b on NDCG@10. This research not only highlights the potential of LLMs in enhancing sequential recommendation systems but also underscores the importance of developing tailored reasoning strategies to fully harness their capabilities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员