To fulfill the low latency requirements of today's applications, deployment of RDMA in datacenters has become prevalent over the recent years. However, the in-order delivery requirement of RDMAs prevents them from leveraging powerful techniques that help improve the performance of datacenters, ranging from fine-grained load balancers to throughput-optimal expander topologies. We demonstrate experimentally that these techniques significantly deteriorate the performance in an RDMA network because they induce packet reordering. Furthermore, lifting the in-order delivery constraint enhances the flexibility of RDMA networks and enables them to employ these performance-enhancing techniques. To realize this, we propose an ordering layer, Eunomia, to equip RDMA NICs to handle packet reordering. Eunomia employs a hybrid-dynamic bitmap structure that efficiently uses the limited on-chip memory with the help of a customized memory controller and handles high degrees of packet reordering. We evaluate the feasibility of Eunomia through an FPGA-based implementation and its performance through large-scale simulations. We show that Eunomia enables a wide range of applications in RDMA datacenter networks, such as fine-grained load balancers which improve performance by reducing average flow completion times by 85% and 52% compared to ECMP and Conweave, respectively, or employment of RDMA in expander topologies like Jellyfish which allows up to 60% lower flow completion times and higher throughput gains compared to Fat tree.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员