In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% accuracy is trained on the corrected dataset, which improve the baseline from 83.3% to 91.7%.


翻译:在工业NLP应用程序中,我们手工标签的数据含有一定数量的噪音数据。我们提出了一个简单的方法来查找噪音数据并手工重新标签,同时我们收集更正信息。然后我们将新的方法将人类校正信息纳入深层学习模式。人类知道如何校正噪音数据。因此,校正信息可以输入深层学习模式。我们用人工标签在自己的文本分类数据集上做实验,因为我们将噪音数据重新贴在我们的行业应用程序的数据集中。实验结果显示,我们的方法提高了分类准确性,从91.7%提高到92.5%。91.7%的精确性在校正数据集上进行了培训,将基线从83.3%提高到91.7%。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年11月10日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
10+阅读 · 2021年11月10日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员