Fine-tuning multilingual foundation models on specific languages often induces catastrophic forgetting, degrading performance on languages unseen in fine-tuning. While this phenomenon is widely-documented, the literature presents fragmented results about when forgetting occurs. To address this ambiguity, we conduct a systematic empirical study using machine translation as a testbed to identify the conditions that trigger catastrophic forgetting in multilingual fine-tuning. Through controlled experiments across different model architectures, data scales, and fine-tuning approaches, we reveal that the relative scale between model and data size is a primary determinant of forgetting. Moreover, we demonstrate that a model's instruction-following ability is more critical for retaining multilingual knowledge than its architecture. Contrary to assumptions, parameter-efficient fine-tuning offers no clear advantage over full fine-tuning in mitigating forgetting. Lastly, we show that cross-lingual alignment can mitigate forgetting while also facilitating positive transfer to unseen target languages.


翻译:在特定语言上对多语言基础模型进行微调常常会引发灾难性遗忘,导致在微调未见语言上的性能下降。尽管这一现象已被广泛记录,但现有文献对于遗忘何时发生给出了零散且不一致的结论。为厘清这一模糊性,我们以机器翻译为测试平台,开展了一项系统的实证研究,旨在识别在多语言微调中触发灾难性遗忘的条件。通过对不同模型架构、数据规模和微调方法进行对照实验,我们发现模型规模与数据规模之间的相对比例是决定遗忘的主要因素。此外,我们证明模型的指令遵循能力对于保留多语言知识比其架构更为关键。与通常的假设相反,参数高效微调在缓解遗忘方面并未显示出优于全参数微调的明显优势。最后,我们表明跨语言对齐不仅可以缓解遗忘,还能促进向未见目标语言的积极知识迁移。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
13+阅读 · 2019年2月28日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员