We introduce the Constraint-Enhanced Quantum Approximate Optimization Algorithm (CE-QAOA), a shallow, constraint-aware ansatz that operates inside the one-hot product space of size [n]^m, where m is the number of blocks and each block is initialized with an n-qubit W_n state. We give an ancilla-free, depth-optimal encoder that prepares a W_n state using n-1 two-qubit rotations per block, and a two-local XY mixer restricted to the same block of n qubits with a constant spectral gap. Algorithmically, we wrap constant-depth sampling with a deterministic classical checker to obtain a polynomial-time hybrid quantum-classical solver (PHQC) that returns the best observed feasible solution in O(S n^2) time, where S is the number of shots. We obtain two advantages. First, when CE-QAOA fixes r >= 1 locations different from the start city, we achieve a Theta(n^r) reduction in shot complexity even against a classical sampler that draws uniformly from the feasible set. Second, against a classical baseline restricted to raw bitstring sampling, we show an exp(Theta(n^2)) separation in the minimax sense. In noiseless circuit simulations of TSP instances ranging from 4 to 10 locations from the QOPTLib benchmark library, we recover the global optimum at depth p = 1 using polynomial shot budgets and coarse parameter grids defined by the problem sizes.


翻译:本文提出约束增强量子近似优化算法(CE-QAOA),这是一种浅层、约束感知的拟设,在规模为[n]^m的单热积空间内操作,其中m为区块数量,每个区块初始化为n量子比特的W_n态。我们给出一种无需辅助量子比特、深度最优的编码器,每个区块使用n-1个双量子比特旋转制备W_n态,并采用限制在同一n量子比特区块内的双局域XY混合器,该混合器具有恒定谱隙。算法层面,我们将恒定深度采样与确定性经典验证器结合,构建多项式时间混合量子-经典求解器(PHQC),该求解器在O(S n^2)时间内返回观测到的最佳可行解,其中S为采样次数。我们获得两项优势:首先,当CE-QAOA固定r≥1个不同于起始城市的位置时,即使相较于从可行集均匀采样的经典采样器,我们实现了采样复杂度Theta(n^r)的降低;其次,相较于仅限于原始比特串采样的经典基线,我们在极小极大意义上展示了exp(Theta(n^2))的分离优势。在基于QOPTLib基准库中4至10个位置的TSP实例的无噪声电路模拟中,我们使用多项式采样预算和由问题规模定义的粗粒度参数网格,在深度p=1时恢复了全局最优解。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
26+阅读 · 2020年10月15日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员