Noise is conventionally viewed as a severe problem in diverse fields, e.g., engineering, learning systems. However, this paper aims to investigate whether the conventional proposition always holds. It begins with the definition of task entropy, which extends from the information entropy and measures the complexity of the task. After introducing the task entropy, the noise can be classified into two kinds, Positive-incentive noise (Pi-noise or $\pi$-noise) and pure noise, according to whether the noise can reduce the complexity of the task. Interestingly, as shown theoretically and empirically, even the simple random noise can be the $\pi$-noise that simplifies the task. $\pi$-noise offers new explanations for some models and provides a new principle for some fields, such as multi-task learning, adversarial training, etc. Moreover, it reminds us to rethink the investigation of noises.


翻译:通常,噪音被视为不同领域(例如工程、学习系统)的一个严重问题。然而,本文旨在调查传统主张是否始终有效。它从任务变异的定义开始,它从信息变异和任务复杂性的测量中延伸而来。在引入任务变异后,噪音可以分为两类:积极激励噪音(Pi-noise 或$-pi-noise)和纯噪音,取决于噪音是否能降低任务的复杂性。有趣的是,正如理论和经验所显示的那样,即使是简单的随机噪音也可以是简化任务的$\pi$-noise。$\pi$-noise为某些模型提供了新的解释,并为一些领域(如多任务学习、对抗训练等)提供了新的原则。此外,它提醒我们重新考虑对噪音的调查。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年2月16日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员