Phishing remains one of the most prevalent online threats, exploiting human trust to harvest sensitive credentials. Existing URL- and HTML-based detection systems struggle against obfuscation and visual deception. This paper presents \textbf{PhishSnap}, a privacy-preserving, on-device phishing detection system leveraging perceptual hashing (pHash). Implemented as a browser extension, PhishSnap captures webpage screenshots, computes visual hashes, and compares them against legitimate templates to identify visually similar phishing attempts. A \textbf{2024 dataset of 10,000 URLs} (70\%/20\%/10\% train/validation/test) was collected from PhishTank and Netcraft. Due to security takedowns, a subset of phishing pages was unavailable, reducing dataset diversity. The system achieved \textbf{0.79 accuracy}, \textbf{0.76 precision}, and \textbf{0.78 recall}, showing that visual similarity remains a viable anti-phishing measure. The entire inference process occurs locally, ensuring user privacy and minimal latency.


翻译:钓鱼攻击仍是最普遍的在线威胁之一,其利用人类信任窃取敏感凭证。现有的基于URL和HTML的检测系统难以应对混淆和视觉欺骗。本文提出\\textbf{PhishSnap},一种利用感知哈希(pHash)的隐私保护型本地钓鱼检测系统。该系统以浏览器扩展形式实现,通过捕获网页截图、计算视觉哈希,并与合法模板比对,以识别视觉相似的钓鱼尝试。我们从PhishTank和Netcraft收集了\\textbf{2024年包含10,000个URL的数据集}(训练/验证/测试集比例为70\\%/20\\%/10\\%)。由于安全下架措施,部分钓鱼页面无法获取,降低了数据集多样性。系统实现了\\textbf{0.79准确率}、\\textbf{0.76精确率}和\\textbf{0.78召回率},表明视觉相似性仍是有效的反钓鱼手段。整个推理过程在本地完成,确保了用户隐私和最低延迟。

0
下载
关闭预览

相关内容

【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
Kaggle知识点:伪标签Pseudo Label
AINLP
40+阅读 · 2020年8月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员