Retrieval-augmented generation (RAG) has emerged as one of the most prominent applications of vector databases. By integrating documents retrieved from a database into the prompt of a large language model (LLM), RAG enables more reliable and informative content generation. While there has been extensive research on vector databases, many open research problems remain once they are considered in the wider context of end-to-end RAG pipelines. One practical yet challenging problem is how to jointly optimize both system performance and generation quality in RAG, which is significantly more complex than it appears due to the numerous knobs on both the algorithmic side (spanning models and databases) and the systems side (from software to hardware). In this paper, we present RAG-Stack, a three-pillar blueprint for quality-performance co-optimization in RAG systems. RAG-Stack comprises: (1) RAG-IR, an intermediate representation that serves as an abstraction layer to decouple quality and performance aspects; (2) RAG-CM, a cost model for estimating system performance given an RAG-IR; and (3) RAG-PE, a plan exploration algorithm that searches for high-quality, high-performance RAG configurations. We believe this three-pillar blueprint will become the de facto paradigm for RAG quality-performance co-optimization in the years to come.


翻译:检索增强生成(RAG)已成为向量数据库最突出的应用之一。通过将数据库检索到的文档整合到大型语言模型(LLM)的提示中,RAG能够实现更可靠、信息更丰富的内容生成。尽管已有大量关于向量数据库的研究,但当将其置于端到端RAG流程的更广泛背景下考量时,仍存在许多开放的研究问题。其中一个实际且具有挑战性的问题是如何在RAG中联合优化系统性能与生成质量——由于算法侧(涵盖模型与数据库)和系统侧(从软件到硬件)存在大量可调节参数,该问题远比表面看来更为复杂。本文提出RAG-Stack,一个面向RAG系统质量-性能协同优化的三支柱蓝图。RAG-Stack包含:(1)RAG-IR:作为抽象层的中间表示,用于解耦质量与性能维度;(2)RAG-CM:基于给定RAG-IR估算系统性能的成本模型;(3)RAG-PE:探索高质量、高性能RAG配置的方案搜索算法。我们相信这一三支柱蓝图将成为未来数年RAG质量-性能协同优化的事实范式。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员