Efficient channel state information at transmitter (CSIT) for frequency division duplex (FDD) massive MIMO can facilitate its backward compatibility with existing FDD cellular networks. To date, several CSIT estimation schemes have been proposed for FDD single-cell massive MIMO systems, but they fail to consider inter-cell-interference (ICI) and suffer from downlink pilot contamination in multi-cell scenario. To solve this problem, this paper proposes a compressive sensing (CS)-based CSIT estimation scheme to combat ICI in FDD multi-cell massive MIMO systems. Specifically, angle-domain massive MIMO channels exhibit the common sparsity over different subcarriers, and such sparsity is partially shared by adjacent users. By exploiting these sparsity properties, we design the pilot signal and the associated channel estimation algorithm under the framework of CS theory, where the channels associated with multiple adjacent BSs can be reliably estimated with low training overhead for downlink pilot decontamination. Simulation results verify the good downlink pilot decontamination performance of the proposed solution compared to its conventional counterparts in multi-cell FDD massive MIMO.


翻译:为解决这一问题,本文件建议采用基于压缩的遥感(CS)基础CSIT估算计划,在捍卫民主阵线的多细胞大型MIMO系统中打击ICI。具体地说,角多面大型MIMO频道展示了对不同子载体的共同渗透性,而相邻用户也部分分享了这种弥散性。我们利用这些宽度特性,在CS理论的框架内设计了试点信号和相关的频道估算算法,在CS理论的框架内,可以可靠地估计与多个相邻的BS相关的频道和低培训管理器,以便进行下行点净化试验。模拟结果核查了拟议解决办法与多细胞捍卫民主阵线大型MIMO常规对应方相比的良好下行点试点净化性表现。

0
下载
关闭预览

相关内容

【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
105+阅读 · 2020年3月22日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年10月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
105+阅读 · 2020年3月22日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员