Recent years have witnessed a growing focus on automated software vulnerability detection. Notably, deep learning (DL)-based methods, which employ source code for the implicit acquisition of vulnerability patterns, have demonstrated superior performance compared to other approaches. However, the DL-based approaches are still hard to capture the vulnerability-related information from the whole code snippet, since the vulnerable parts usually account for only a small proportion. As evidenced by our experiments, the approaches tend to excessively emphasize semantic information, potentially leading to limited vulnerability detection performance in practical scenarios. First, they cannot well distinguish between the code snippets before (i.e., vulnerable code) and after (i.e., non-vulnerable code) developers' fixes due to the minimal code changes. Besides, substituting user-defined identifiers with placeholders (e.g., "VAR1" and "FUN1") in obvious performance degradation at up to 14.53% with respect to the F1 score. To mitigate these issues, we propose to leverage the vulnerable and corresponding fixed code snippets, in which the minimal changes can provide hints about semantic-agnostic features for vulnerability detection. In this paper, we propose a software vulneRability dEteCtion framework with zerO-sum game and prototype learNing, named RECON. In RECON, we propose a zero-sum game construction module. Distinguishing the vulnerable code from the corresponding fixed code is regarded as one player (i.e. Calibrator), while the conventional vulnerability detection is another player (i.e. Detector) in the zero-sum game. The goal is to capture the semantic-agnostic features of the first player for enhancing the second player's performance for vulnerability detection. Experiments on the public benchmark dataset show that RECON outperforms the state-of-the-art baseline by 6.29% in F1 score.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员