Framing is an essential device in news reporting, allowing the writer to influence public perceptions of current affairs. While there are existing automatic news framing detection datasets in various languages, none of them focus on news framing in the Chinese language which has complex character meanings and unique linguistic features. This study introduces the first Chinese News Framing dataset, to be used as either a stand-alone dataset or a supplementary resource to the SemEval-2023 task 3 dataset. We detail its creation and we run baseline experiments to highlight the need for such a dataset and create benchmarks for future research, providing results obtained through fine-tuning XLM-RoBERTa-Base and using GPT-4o in the zero-shot setting. We find that GPT-4o performs significantly worse than fine-tuned XLM-RoBERTa across all languages. For the Chinese language, we obtain an F1-micro (the performance metric for SemEval task 3, subtask 2) score of 0.719 using only samples from our Chinese News Framing dataset and a score of 0.753 when we augment the SemEval dataset with Chinese news framing samples. With positive news frame detection results, this dataset is a valuable resource for detecting news frames in the Chinese language and is a valuable supplement to the SemEval-2023 task 3 dataset.


翻译:框架是新闻报道中的一种关键手段,能使作者影响公众对时事的认知。尽管目前已存在多种语言的自动新闻框架检测数据集,但尚无专注于汉语新闻框架的研究,而汉语具有复杂的字义和独特的语言特征。本研究首次引入了中文新闻框架数据集,该数据集可作为独立资源使用,也可作为SemEval-2023任务3数据集的补充资源。我们详细阐述了其构建过程,并通过基线实验论证了此类数据集的必要性,同时为未来研究建立了基准——实验通过微调XLM-RoBERTa-Base模型及采用零样本设置的GPT-4o获得结果。研究发现,在所有语言中GPT-4o的表现均显著逊于微调后的XLM-RoBERTa。针对中文语言,仅使用本中文新闻框架数据集样本时获得F1-micro(SemEval任务3子任务2的性能指标)得分0.719,而将SemEval数据集与中文新闻框架样本结合后得分提升至0.753。凭借积极的新闻框架检测结果,本数据集成为检测中文新闻框架的宝贵资源,也是对SemEval-2023任务3数据集的重要补充。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员