Haze usually leads to deteriorated images with low contrast, color shift and structural distortion. We observe that many deep learning based models exhibit exceptional performance on removing homogeneous haze, but they usually fail to address the challenge of non-homogeneous dehazing. Two main factors account for this situation. Firstly, due to the intricate and non uniform distribution of dense haze, the recovery of structural and chromatic features with high fidelity is challenging, particularly in regions with heavy haze. Secondly, the existing small scale datasets for non-homogeneous dehazing are inadequate to support reliable learning of feature mappings between hazy images and their corresponding haze-free counterparts by convolutional neural network (CNN)-based models. To tackle these two challenges, we propose a novel two branch network that leverages 2D discrete wavelete transform (DWT), fast Fourier convolution (FFC) residual block and a pretrained ConvNeXt model. Specifically, in the DWT-FFC frequency branch, our model exploits DWT to capture more high-frequency features. Moreover, by taking advantage of the large receptive field provided by FFC residual blocks, our model is able to effectively explore global contextual information and produce images with better perceptual quality. In the prior knowledge branch, an ImageNet pretrained ConvNeXt as opposed to Res2Net is adopted. This enables our model to learn more supplementary information and acquire a stronger generalization ability. The feasibility and effectiveness of the proposed method is demonstrated via extensive experiments and ablation studies. The code is available at https://github.com/zhouh115/DWT-FFC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员