Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder that significantly impacts various key aspects of life, requiring accurate diagnostic methods. Electroencephalogram (EEG) signals are used in diagnosing ADHD, but proper preprocessing is crucial to avoid noise and artifacts that could lead to unreliable results. Method: This study utilized a public EEG dataset from children diagnosed with ADHD and typically developing (TD) children. Four preprocessing techniques were applied: no preprocessing (Raw), Finite Impulse Response (FIR) filtering, Artifact Subspace Reconstruction (ASR), and Independent Component Analysis (ICA). EEG recordings were segmented, and features were extracted and selected based on statistical significance. Classification was performed using Machine Learning models, as XGBoost, Support Vector Machine, and K-Nearest Neighbors. Results: The absence of preprocessing leads to artificially high classification accuracy due to noise. In contrast, ASR and ICA preprocessing techniques significantly improved the reliability of results. Segmenting EEG recordings revealed that later segments provided better classification accuracy, likely due to the manifestation of ADHD symptoms over time. The most relevant EEG channels were P3, P4, and C3. The top features for classification included Kurtosis, Katz fractal dimension, and power spectral density of Delta, Theta, and Alpha bands. Conclusions: Effective preprocessing is essential in EEG-based ADHD diagnosis to prevent noise-induced biases. This study identifies crucial EEG channels and features, providing a foundation for further research and improving ADHD diagnostic accuracy. Future work should focus on expanding datasets, refining preprocessing methods, and enhancing feature interpretability to improve diagnostic accuracy and model robustness for clinical use.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员