We analyze the open-loop mechanical tracking performance of a sub-Terahertz (sub-THz) and Terahertz (THz) uplink communication system. These high-frequency bands enable multi-gigabit links through large bandwidths and narrow beams, but require precise pointing to overcome spreading loss. A tracking system can be used to orient horn antennas toward mobile targets. We develop a mathematical model that captures the mechanical dynamics of a real tracking system, which includes motion latency and acceleration and velocity limits, to quantify pointing errors during satellite passes and integrate these effects into the link budget. We evaluate the trade-offs between beam directionality and pointing tolerance across different Low Earth Orbit (LEO) satellite trajectories and control strategies. The results link the hardware limitations to the communications performance, providing design guidelines for high-frequency Non-Terrestrial Network (NTN) uplink under practical mechanical constraints.
翻译:我们分析了亚太赫兹(sub-THz)和太赫兹(THz)上行链路通信系统的开环机械跟踪性能。这些高频段通过大带宽和窄波束实现多千兆比特链路,但需要精确指向以克服扩散损耗。跟踪系统可用于将喇叭天线对准移动目标。我们建立了一个数学模型,该模型捕捉了真实跟踪系统的机械动力学特性(包括运动延迟、加速度和速度限制),以量化卫星过境期间的指向误差,并将这些效应纳入链路预算。我们评估了不同低地球轨道(LEO)卫星轨迹和控制策略下波束方向性与指向容限之间的权衡。研究结果将硬件限制与通信性能联系起来,为实际机械约束下的高频非地面网络(NTN)上行链路提供了设计指导。