This paper assesses the potential for the large language models (LLMs) GPT-4 and GPT-3.5 to aid in deriving insight from education feedback surveys. Exploration of LLM use cases in education has focused on teaching and learning, with less exploration of capabilities in education feedback analysis. Survey analysis in education involves goals such as finding gaps in curricula or evaluating teachers, often requiring time-consuming manual processing of textual responses. LLMs have the potential to provide a flexible means of achieving these goals without specialized machine learning models or fine-tuning. We demonstrate a versatile approach to such goals by treating them as sequences of natural language processing (NLP) tasks including classification (multi-label, multi-class, and binary), extraction, thematic analysis, and sentiment analysis, each performed by LLM. We apply these workflows to a real-world dataset of 2500 end-of-course survey comments from biomedical science courses, and evaluate a zero-shot approach (i.e., requiring no examples or labeled training data) across all tasks, reflecting education settings, where labeled data is often scarce. By applying effective prompting practices, we achieve human-level performance on multiple tasks with GPT-4, enabling workflows necessary to achieve typical goals. We also show the potential of inspecting LLMs' chain-of-thought (CoT) reasoning for providing insight that may foster confidence in practice. Moreover, this study features development of a versatile set of classification categories, suitable for various course types (online, hybrid, or in-person) and amenable to customization. Our results suggest that LLMs can be used to derive a range of insights from survey text.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员