While Text-to-Speech (TTS) systems can achieve fine-grained control over emotional expression via natural language prompts, a significant challenge emerges when the desired emotion (style prompt) conflicts with the semantic content of the text. This mismatch often results in unnatural-sounding speech, undermining the goal of achieving fine-grained emotional control. Classifier-Free Guidance (CFG) is a key technique for enhancing prompt alignment; however, its application to auto-regressive (AR) TTS models remains underexplored, which can lead to degraded audio quality. This paper directly addresses the challenge of style-content mismatch in AR TTS models by proposing an adaptive CFG scheme that adjusts to different levels of the detected mismatch, as measured using large language models or natural language inference models. This solution is based on a comprehensive analysis of CFG's impact on emotional expressiveness in state-of-the-art AR TTS models. Our results demonstrate that the proposed adaptive CFG scheme improves the emotional expressiveness of the AR TTS model while maintaining audio quality and intelligibility.


翻译:尽管文本转语音(TTS)系统能够通过自然语言提示实现情感表达的细粒度控制,但当期望情感(风格提示)与文本语义内容发生冲突时,一个重大挑战随之出现。这种不匹配往往导致语音听起来不自然,从而破坏了实现细粒度情感控制的目标。无分类器引导(CFG)是增强提示对齐的关键技术;然而,其在自回归(AR)TTS模型中的应用仍待深入探索,不当应用可能导致音频质量下降。本文通过提出一种自适应CFG方案,直接应对AR TTS模型中的风格-内容不匹配挑战。该方案根据使用大语言模型或自然语言推理模型检测到的不匹配程度进行自适应调整。该解决方案基于对CFG在先进AR TTS模型中情感表现力影响的综合分析。我们的结果表明,所提出的自适应CFG方案在保持音频质量和可懂度的同时,提升了AR TTS模型的情感表现力。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员