Deep neural networks (DNNs) with ReLU activation function are proved to be able to express viscosity solutions of linear partial integrodifferental equations (PIDEs) on state spaces of possibly high dimension $d$. Admissible PIDEs comprise Kolmogorov equations for high-dimensional diffusion, advection, and for pure jump L\'{e}vy processes. We prove for such PIDEs arising from a class of jump-diffusions on $\mathbb{R}^d$ that for any suitable measure $\mu^d$ on $\mathbb{R}^d$ there exist constants $C,{\mathfrak{p}},{\mathfrak{q}}>0$ such that for every $\varepsilon \in (0,1]$ and for every $d\in \mathbb{N}$ the DNN $L^2(\mu^d)$-expression error of viscosity solutions of the PIDE is of size $\varepsilon$ with DNN size bounded by $Cd^{\mathfrak{p}}\varepsilon^{-\mathfrak{q}}$. In particular, the constant $C>0$ is independent of $d\in \mathbb{N}$ and of $\varepsilon \in (0,1]$ and depends only on the coefficients in the PIDE and the measure used to quantify the error. This establishes that ReLU DNNs can break the curse of dimensionality (CoD for short) for viscosity solutions of linear, possibly degenerate PIDEs corresponding to suitable Markovian jump-diffusion processes. As a consequence of the employed techniques we also obtain that expectations of a large class of path-dependent functionals of the underlying jump-diffusion processes can be expressed without the CoD.


翻译:具有 ReLU 激活功能的深神经网络( DNN) 已被证明能够在可能高维的州空间中表达线性部分内分异方程式( PIDE) 的粘度解决方案。 允许 PIDE 包含高维扩散、 振荡和纯跳跃的 Kolmogorov 方程式 。 我们证明这种PIDE 产生于 $\ mathbb{ R ⁇ d$ 的跳- 扩散级 $\ mathbb{ 美元, 任何合适的度量 $\ mud$, $mathb{ R ⁇ d$ 的直线性部分内分异方方方方方方方方方程式( PIDE) 常数 $,\ mathfrak{q ⁇ 0, 等於每立方立方方方立方立方方立方方方方方方程式的數數數值數值數值 。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员