The $\lambda$-superposition calculus is a successful approach to proving higher-order formulas. However, some parts of the calculus are extremely explosive, notably due to the higher-order unifier enumeration and the functional extensionality axiom. In the present work, we introduce an "optimistic" version of $\lambda$-superposition that addresses these two issues. Specifically, our new calculus delays explosive unification problems using constraints stored along with the clauses, and it applies functional extensionality in a more targeted way. The calculus is sound and refutationally complete with respect to a Henkin semantics. We have yet to implement it in a prover, but examples suggest that it will outperform, or at least usefully complement, the original $\lambda$-superposition calculus.


翻译:$\lambda$-叠加演算是证明高阶公式的一种成功方法。然而,该演算的某些部分具有极高的爆炸性,这主要源于高阶合一器的枚举以及函数外延性公理。在当前工作中,我们提出了一种“乐观”版本的$\lambda$-叠加演算,以解决这两个问题。具体而言,我们的新演算通过将约束条件与子句一同存储,从而延迟处理爆炸性的合一问题,并以更具针对性的方式应用函数外延性。该演算相对于亨金语义是可靠且反驳完备的。我们尚未在证明器中实现它,但示例表明,其性能将优于或至少能有效补充原始的$\lambda$-叠加演算。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
13+阅读 · 2021年3月29日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
38+阅读 · 2021年8月31日
Arxiv
13+阅读 · 2021年3月29日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员