Topology optimization is a powerful tool utilized in various fields for structural design. However, its application has primarily been restricted to static or passively moving objects, mainly focusing on hard materials with limited deformations and contact capabilities. Designing soft and actively moving objects, such as soft robots equipped with actuators, poses challenges due to simulating dynamics problems involving large deformations and intricate contact interactions. Moreover, the optimal structure depends on the object's motion, necessitating a simultaneous design approach. To address these challenges, we propose "4D topology optimization," an extension of density-based topology optimization that incorporates the time dimension. This enables the simultaneous optimization of both the structure and self-actuation of soft bodies for specific dynamic tasks. Our method utilizes multi-indexed and hierarchized density variables distributed over the spatiotemporal design domain, representing the material layout, actuator layout, and time-varying actuation. These variables are efficiently optimized using gradient-based methods. Forward and backward simulations of soft bodies are done using the material point method, a Lagrangian-Eulerian hybrid approach, implemented on a recent automatic differentiation framework. We present several numerical examples of self-actuating soft body designs aimed at achieving locomotion, posture control, and rotation tasks. The results demonstrate the effectiveness of our method in successfully designing soft bodies with complex structures and biomimetic movements, benefiting from its high degree of design freedom.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员