Vision Transformers (ViTs) have emerged as powerful architectures in medical image analysis, excelling in tasks such as disease detection, segmentation, and classification. However, their reliance on large, attention-driven models makes them vulnerable to hardware-level attacks. In this paper, we propose a novel threat model referred to as Med-Hammer that combines the Rowhammer hardware fault injection with neural Trojan attacks to compromise the integrity of ViT-based medical imaging systems. Specifically, we demonstrate how malicious bit flips induced via Rowhammer can trigger implanted neural Trojans, leading to targeted misclassification or suppression of critical diagnoses (e.g., tumors or lesions) in medical scans. Through extensive experiments on benchmark medical imaging datasets such as ISIC, Brain Tumor, and MedMNIST, we show that such attacks can remain stealthy while achieving high attack success rates about 82.51% and 92.56% in MobileViT and SwinTransformer, respectively. We further investigate how architectural properties, such as model sparsity, attention weight distribution, and the number of features of the layer, impact attack effectiveness. Our findings highlight a critical and underexplored intersection between hardware-level faults and deep learning security in healthcare applications, underscoring the urgent need for robust defenses spanning both model architectures and underlying hardware platforms.


翻译:视觉Transformer(ViTs)已成为医学图像分析中的强大架构,在疾病检测、分割和分类等任务中表现出色。然而,其对大规模注意力驱动模型的依赖使其易受硬件级攻击。本文提出一种名为Med-Hammer的新型威胁模型,该模型将Rowhammer硬件故障注入与神经木马攻击相结合,以破坏基于ViT的医学成像系统的完整性。具体而言,我们展示了通过Rowhammer引发的恶意比特翻转如何触发植入的神经木马,导致医学扫描中出现针对性误分类或关键诊断(如肿瘤或病变)的抑制。通过在ISIC、脑肿瘤和MedMNIST等基准医学成像数据集上的大量实验,我们证明此类攻击可保持隐蔽性,同时在MobileViT和SwinTransformer中分别实现约82.51%和92.56%的高攻击成功率。我们进一步研究了模型稀疏性、注意力权重分布及层特征数量等架构特性如何影响攻击效果。我们的研究结果揭示了医疗应用中硬件级故障与深度学习安全之间关键且尚未充分探索的交叉领域,强调了跨越模型架构和底层硬件平台的鲁棒防御的迫切需求。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员