Inference of transfer operators from data is often formulated as a classical problem that hinges on the Ulam method. The conventional description, known as the Ulam-Galerkin method, involves projecting onto basis functions represented as characteristic functions supported over a fine grid of rectangles. From this perspective, the Ulam-Galerkin approach can be interpreted as density estimation using the histogram method. In this study, we recast the problem within the framework of statistical density estimation. This alternative perspective allows for an explicit and rigorous analysis of bias and variance, thereby facilitating a discussion on the mean square error. Through comprehensive examples utilizing the logistic map and a Markov map, we demonstrate the validity and effectiveness of this approach in estimating the eigenvectors of the Frobenius-Perron operator. We compare the performance of Histogram Density Estimation(HDE) and Kernel Density Estimation(KDE) methods and find that KDE generally outperforms HDE in terms of accuracy. However, it is important to note that KDE exhibits limitations around boundary points and jumps. Based on our research findings, we suggest the possibility of incorporating other density estimation methods into this field and propose future investigations into the application of KDE-based estimation for high-dimensional maps. These findings provide valuable insights for researchers and practitioners working on estimating the Frobenius-Perron operator and highlight the potential of density estimation techniques in this area of study. Keywords: Transfer Operators; Frobenius-Perron operator; probability density estimation; Ulam-Galerkin method; Kernel Density Estimation; Histogram Density Estimation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年9月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员