We characterize mixed-level orthogonal arrays in terms of algebraic designs in a special multigraph. We prove a mixed-level analog of the Bierbrauer-Friedman (BF) bound for pure-level orthogonal arrays and show that arrays attaining it are radius-1 completely regular codes (equivalently, intriguing sets, equitable 2-partitions, perfect 2-colorings) in the corresponding multigraph. For the case when the numbers of levels are powers of the same prime number, we characterize, in terms of multispreads, additive mixed-level orthogonal arrays attaining the BF bound. For pure-level orthogonal arrays, we consider versions of the BF bound obtained by replacing the Hamming graph by its polynomial generalization and show that in some cases this gives a new bound. Keywords: orthogonal array, algebraic t-design, completely regular code, equitable partition, intriguing set, Hamming graph, Bierbrauer-Friedman bound, additive codes.


翻译:我们通过特殊多重图中的代数设计来刻画混合水平正交阵列。针对纯水平正交阵列,我们证明了混合水平版本的Bierbrauer-Friedman(BF)界,并证明达到该界的阵列在对应多重图中是半径为1的完全正则码(等价于有趣集、均衡2-划分、完美2-着色)。当水平数为相同素数的幂时,我们通过多重扩散集刻画了达到BF界的加法混合水平正交阵列。对于纯水平正交阵列,我们考虑用多项式推广的Hamming图替换原图得到的BF界变体,并证明在某些情况下这会产生新的界。关键词:正交阵列,代数t-设计,完全正则码,均衡划分,有趣集,Hamming图,Bierbrauer-Friedman界,加法码。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员