This study presents a novel workflow designed to efficiently and accurately register large-scale mobile laser scanning (MLS) point clouds to a target model point cloud in urban street scenarios. This workflow specifically targets the complexities inherent in urban environments and adeptly addresses the challenges of integrating point clouds that vary in density, noise characteristics, and occlusion scenarios, which are common in bustling city centers. Two methodological advancements are introduced. First, the proposed Semi-sphere Check (SSC) preprocessing technique optimally fragments MLS trajectory data by identifying mutually orthogonal planar surfaces. This step reduces the impact of MLS drift on the accuracy of the entire point cloud registration, while ensuring sufficient geometric features within each fragment to avoid local minima. Second, we propose Planar Voxel-based Generalized Iterative Closest Point (PV-GICP), a fine registration method that selectively utilizes planar surfaces within voxel partitions. This pre-process strategy not only improves registration accuracy but also reduces computation time by more than 50% compared to conventional point-to-plane ICP methods. Experiments on real-world datasets from Munich's inner city demonstrate that our workflow achieves sub-0.01 m average registration accuracy while significantly shortening processing times. The results underscore the potential of the proposed methods to advance automated 3D urban modeling and updating, with direct applications in urban planning, infrastructure management, and dynamic city monitoring.


翻译:本研究提出了一种新颖的工作流程,旨在高效、准确地将大规模移动激光扫描点云配准到目标模型点云,适用于城市街道场景。该工作流程专门针对城市环境固有的复杂性,并巧妙地解决了点云密度、噪声特征和遮挡场景变化带来的挑战,这些挑战在繁华的城市中心区域尤为常见。研究引入了两项方法学改进。首先,提出的半球面检查预处理技术通过识别相互正交的平面表面,对MLS轨迹数据进行优化分段。这一步骤减少了MLS漂移对整个点云配准精度的影响,同时确保每个分段内具有足够的几何特征以避免局部最优。其次,我们提出了基于平面体素的广义迭代最近点法,这是一种精细配准方法,选择性地利用体素分区内的平面表面。与传统的点对面ICP方法相比,这种预处理策略不仅提高了配准精度,还将计算时间减少了50%以上。在慕尼黑内城区的真实数据集上进行的实验表明,我们的工作流程实现了低于0.01米的平均配准精度,同时显著缩短了处理时间。结果强调了所提方法在推动自动化三维城市建模与更新方面的潜力,可直接应用于城市规划、基础设施管理和动态城市监测。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员